Wednesday, March 21, 2007

Loop quantum gravity


Loop quantum gravity (LQG), also known as loop gravity and quantum geometry, is a proposed quantum theory of spacetime which attempts to reconcile the seemingly incompatible theories of quantum mechanics and general relativity. This theory is one of a family of theories called canonical quantum gravity. It was developed in parallel with loop quantization, a rigorous framework for nonperturbative quantization of diffeomorphism-invariant gauge theory. In plain English, this is a quantum theory of gravity in which the very space that all other physics occurs in is quantized.

Loop quantum gravity (LQG) is a proposed theory of spacetime which is constructed with the idea of spacetime quantization via the mathematically rigorous theory of loop quantization. It preserves many of the important features of general relativity, while at the same time employing quantization of both space and time at the Planck scale in the tradition of quantum mechanics.

LQG is not the only theory of quantum gravity. The critics of this theory say that LQG is a theory of gravity and nothing more, though some LQG theorists have tried to show that the theory can describe matter as well. There are other theories of quantum gravity, and a list of them can be found on the quantum gravity page.

Many string theorists believe that it is impossible to quantize gravity in 3+1 dimensions without creating matter and energy artifacts. This is not proven, and it is also unproven that the matter artifacts, predicted by string theory, are not exactly the same as observed matter. Should LQG succeed as a quantum theory of gravity, the known matter fields would have to be incorporated into the theory a posteriori. Lee Smolin, one of the fathers of LQG, has explored the possibility that string theory and LQG are two different approximations to the same ultimate theory.

The main claimed successes of loop quantum gravity are:

1. It is a nonperturbative quantization of 3-space geometry, with quantized area and volume operators.
2. It includes a calculation of the entropy of black holes.
3. It is a viable gravity-only alternative to string theory.

However, these claims are not universally accepted. While many of the core results are rigorous mathematical physics, their physical interpretations remain speculative. LQG may possibly be viable as a refinement of either gravity or geometry. For example, entropy calculated in (2) is for a kind of hole which may, or may not, be a black hole.

Some alternative approaches to quantum gravity, such as spin foam models, are closely related to loop quantum gravity.

MORE AT <http://en.wikipedia.org/wiki/Loop_quantum_gravity>

No comments: